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Linking Winter and Summer 
Events in a Migratory Bird by 
Using Stable-Carbon Isotopes 

Peter P. Marra,*t Keith A. Hobson, Richard T. Holmes 

For migratory birds, early arrival and physical condition on the breeding grounds 
are important determinants of reproductive success and fitness. Differences in 
arrival times often exceed a month, and later arriving individuals are often in 
poorer condition. Habitat-specific isotopic signatures indicate that the quality 
of winter habitats occupied by American redstarts (Setophaga ruticilla) deter- 
mines their physical condition and spring departure dates, which in turn result 
in variable arrival schedules and condition on temperate breeding grounds. 
These findings link events in tropical winter grounds with those in temperate 
breeding areas for a migratory songbird and provide evidence that winter 
habitats may be limiting. 

Natural selection acts on individuals throughout 
the annual cycle. For migratory animals, under- 
standing these selection processes has been lim- 
ited by our inability to follow individuals year- 
round, yet events during each phase of the 
annual cycle are likely to influence those in 
subsequent phases. Many long-distance migra- 
tory birds, such as the American redstart, spend 
3 to 5 months on their temperate breeding 
grounds, 1 to 2 months on autumn migration, 6 
to 7 months on tropical wintering areas, and 
another month on spring migration (1). 

For many migratory species, males arrive at 
breeding habitats before females (2), and breed- 
ing success and physical condition decline with 
arrival date (3, 4). Early arrival appears to be 
advantageous because it gives access to the best 
breeding sites and mates, as well as additional 
time to replace lost clutches (5). Declining re- 
productive success for late aniving birds is also 
attributed to poor physical condition of these 
individuals (4). Factors that determine airival 
time and physical condition of birds in breeding 
areas are poorly understood. 

To test the hypothesis that winter events 
influence arrival dynamics on the breeding 
grounds, we studied American redstaits in two 
habitats in southwestem Jamaica: a black man- 
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grove (Avicennia germinans) forest in which 
males predominated (65% male and 35% fe- 
male) and a drier, second-growth scrub habitat 
in which females were more abundant (30% 
male and 70% female). Sexual habitat segrega- 
tion is common in redstarts during the winter 
period (6) and is produced by the dominance 
behavior of older males forcing most females 
and young males into habitats of poorer quality 
(7-9). In autumn 1995 and 1996, redstarts were 
captured with mist nets, measured, bled for 
hormone and stable-isotope assays, color-band- 
ed, and released. In late March and early April, 
those individuals that remained on territoiy 
over the winter were recaptured for remeasure- 
ment. We found that individuals wintering in 
the forest habitat, regardless of sex, maintained 
or gained body mass, whereas individuals in 
scrub habitat lost up to 11% of their body mass 
[0.06 + 0.05 g (mean ? SE) compared with 
-0.24 + 0.07 g; two-way analysis of variance: 
sex F= 0.09, P = 0.77; habitat F = 15.1, P = 
0.0004; sex by habitat F = 2.56, P = 0.12]. 
Individuals in scrub habitats showed other signs 
of deteriorated physical condition, including el- 
evated plasma corticosterone concentration (9). 

The poor physical condition of redstarts in 
scrub habitat did not lead to lower over- 
winter survival (8), but it did result in a delay 
in departure schedules (10). Both males and 
females departed significantly later from 
scrub habitat in both years (Fig. 1). Further- 
more, departure time was inversely coiTelated 
with change in body mass (Fig. 2), implying 
that redstarts in better physical condition 
were able to leave sooner. 

To determine if habitat segregation during 
winter influences the arnival schedules of birds 
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onto breeding sites, wve used 8l3C signatures in 
redstart tissue as anl indicator of habitat occupan- 
cy. Stable-carbon isotopes are suitable for such 
applications because the rate of diffusion of 13C 
fiom the atmosphere into plant tissues differs 
between plants with C3, C4, and Crassulacean 

acid metabolism (CAM) photosynthetic path- 
ways (C3 and C4 plants produce a three-carbon 
or four-carbon acid, respectively, as the first 
product of photosynthesis). C3 plants are typ- 
ically associated with cooler, moister habitats 
and have inore depleted 813C values, whereas 
C4 and CAM plants are often associated with 
hotter and drier environments and have more 
enriched 813C values (11). Similar 13C eirich- 
ment patterns in C3 plant tissues may also 
result from differences in plant water use effi- 
ciency (11). Mangrove (12) and tropical low- 
land forests are both C3 habitats (13, 14). 
More xeric tropical habitats containing 
grasses (for example, our scrub habitat in 
Jamaica) typically have more C4 plants (11, 
14). These relations were substantiated 
with isotopic assessments of insects collect- 
ed from the two Jamaican habitats (15). 

Previous studies have shown that animal 
tissues reflect the isotopic composition of 
their supporting food web (14, 16). Thus, we 

expected American redstalts as obligate in- 
sectivores (1) to incorporate a habitat-specific 
813C signature into their tissues from the 
phytophagous insects they consumed. An 
analysis of 813C values in tissue (17) collect- 
ed from redstarts in Jamaica and in a second 
geographically distinct locality in Honduras 
revealed that individuals in wet, forested hab- 
itats had significantly depleted 813C values 
relative to individuals in drier, scruLb habitats, 
regardless of sex or locality (Fig. 3). 

To determiine if habitats occupied in winter 
influence arrival dates in North America, we 
collected tissue fiom American redstarts as they 
arrived in spring 1997 and settled on breeding 
areas at the Hubbard Brook Experimental For- 
est, central New Hampshire, U.S.A. We found 
that later arriving redstarls had tissue 813C val- 
ues more enriched relative to earlier arrivals 
(Fig. 4) (18). This suggests that males arriving 
on breeding grounds early were those originat- 
ing fiom wetter tropical habitats, whereas those 
arriving later were firom drier tropical habitats 
(Fig. 4). The period of arrival that we sampled 
may have been too short to adequately test this 
for females. Using body mass corrected for 
skeletal size as an index to physical condition, 
we also fotnd that the physical condition of 
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Fig. 1 (top). Spring departure schedules of 45 
color-banded American redstarts from their 
wintering territories in Jamaica, West In- m 
dies. In 1995 and 1996 redstarts departed ,: 40- 

significantLy earlier from bLack mangrove : - 
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[Kaplan-Meier survivorship analysis (23); , , , 
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0 
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departed significantly earLier than both fe- Mass change from October to April (g) 
males (P = 0.04) and maLes (P = 0.008) 
from scrub. Fig. 2 (bottom). The relation between winter mass change (in grams) of color- 
banded American redstarts captured in October and then recaptured in April and the number of 
days untiL they departed on spring migration (Pearson's r = 0.60, P < 0.004). 

redstarts arriving on the breeding grounds de- 
clined fiom early to later anival (r = -0.52, 
P = 0.016, n = 21) (19). 

The specific winter ground origin of redstarts 
breeding at Hubbard Brook is not known (1). 
However, because habitat segregation is pelva- 
sive tlhroughout most of the winter range of 
redstaits (9), we believe the carbon isotope sig- 
natuires fiom Jamaican and Honduran habitats to 
be represenitative of the major habitat types oc- 
cupied by redstarts throughout their winter dis- 
tribution. The application of stable-carbon iso- 
tope methodology has allowed us to link two 
separate periods in the annuual cycle of this mi- 
gratoiy species. 

a13c 
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forest forest scrub 

Fig. 3. Stable-carbon isotope values (813C) 

(mean + SE) taken from blood samples of Amer- 
ican redstarts in three habitat types in Jamaica, 
West Indies, and in two habitat types in Hondu- 
ras, Central America. These habitats contained 
different sex ratios of wintering American red- 
starts (wet lowland forest, 95% maLe; black man- 
grove forest, 65% maLe; second-growth scrub, 
30% maLe). In both localities, isotope values dif- 
fered significantly across habitat types (F = 
77.34, P < 0.0001) but did not differ between 
geographic localities (F = 1.91, P = 0.20). No 
effects of sex were found within a habitat when 
comparing isotope values of redstarts in man- 
grove forest versus scrub (F = 0.16, P < 0.69). 
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Fig. 4. Stable-carbon isotope vaLues (813C) taken 
from muscLe tissue of American redstarts as they 
arrived in spring at the Hubbard Brook Experi- 
mentaL Forest, West Thornton, New Hampshire, 
U.S.A. (sexes combined: Spearman p = 0.47, P = 
0.01; maLes onLy: Spearman p = 0.80, P = 0.002; 
femaLes onLy: Spearman p = o.ii, P = 0.72). 
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These results implicate events during the 
preceding wiinter, namely intraspecific compe- 
tition for optimal winter habitat mediated 
through behavioral dominance (8, 20), as an 
important factor deteirmining airival times and 
condition upon airival of redstarts in their north 
temperate breeding areas. This finding is im- 
portant because airival time at the breeding 
ground is a major deteirminant of fitness in 
migratoiy birds (3, 21). Furtheimore, our evi- 
dence that later airiving birds wintered in drier 
habitats and that physical condition declined 
with arrival date suggests that optimal winter 
habitats for redstarts may be saturated and 
therefore limiting. If optimal wiinter habitats 
(more mesic sites) were always available, then 
all redstarts should have occupied them, and we 
would have found no relation between 613C 
values and the physical condition of redstarts 
over the airival period. This conclusion, that 
winter habitats are limiting, has important con- 
servation implications for the long-teirm stabil- 
ity of migratory bird populations, many of 
which are declining and of conservation con- 
cern (22). 
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Coupling of Mitosis to the 
Completion of S Phase Through 
Cdc34-Mediated Degradation of 

Weel 
W. Matthew MichaeL* and John Newport 

The dependence of mitosis on the completion of the period of DNA replication 
in the cell cycle [synthesis (S) phase] ensures that chromosome segregation 
occurs only after the genome has been fully duplicated. A key negative regulator 
of mitosis, the protein kinase Weel, was degraded in a Cdc34-dependent 
fashion in Xenopus egg extracts. This proteolysis event was required for a timely 
entrance into mitosis and was inhibited when DNA replication was blocked. 
Therefore, the DNA replication checkpoint can prevent mitosis by suppressing 
the proteolysis of Weel during S phase. 

Dividing cells depend on ubiquitin-mediated 
protein destruction for proper cell cycle pro- 
gression. At least three distinct cell cycle 
transitions are regulated by proteolysis: pas- 
sage from the prereplicative phase of growth 
(G1) to S phase, passage through metaphase, 
and exit from mitosis (1). Exit from mitosis 

Department of Biology, University of California, San 
Diego, La Jolla, CA 92093-0347, USA. 

*To whom correspondence should be addressed. E- 
mail: wmichael@biomail.ucsd.edu 

depends on the proteolysis of the cyclin sub- 
unit of the maturation promoting factor (MPF); 
this is accomplished by the anaphase promoting 
complex (APC)/cyclosome, a large multi-sub- 
unit complex that ftnctions as a ubiquitin li- 
gase. The APC also regulates entrance into 
anaphase by promoting the separation of sister 
chromatids that is due to the destruction of the 
Pdsl (budding yeast) and Cut2 (fission yeast) 
proteins (1). In yeast, the Sicl protein, an in- 
hibitor of the S phase cyclin-dependent kinase 
that initiates DNA replication, is degraded to 
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